TFT Terms, Functions and Features
 

Review Terms:

 

 

 

 


Dithering and Frame Rate Control (FRC)

 

Dithering and Frame Rate Control (FRC) relate to the colour depth of a monitor panel and are technologies used to boost the colours which the matrix can display. For instance TN Film screens are traditionally more economical than other technologies when it comes to colour depth. In fact, they only display 64 red, 64 blue and 64 true green shades by default through pixel rotations. The maximum amount of colours achievable from liquid crystal rotation alone is 262,144. In order to reach 16 million colours and above, panel manufacturers commonly use two technologies: Dithering and Frame Rate Control (FRC). These terms are often interchanged, but strictly can mean different things.

 

 

 


Interpolation / Scaling of Resolution

 

While TFT screens are best run at their native resolutions, it is possible to run them at lower resolutions if need be. In doing so the screen must interpolate the image from below the native, leading commonly to some loss in image clarity and sharpness as the image is stretched across pixels. In office use this can be a problem and can look quite poor, but in gaming, it is generally not so much of a problem. The ability of a TFT to interpolate the image depends on the particular panel used, and some manufacturers have been able to improve the ability of their panels to run outside the native resolution. Generally though it is not recommended to run outside the native resolution on a TFT if you can help it.

 

Where screens are having to handle lower resolutions, the image will normally be interpolated and stretched to fill the screen completely. This can cause problems if your source content does not match the aspect ratio of the screen.. One way manufacturers can get round this is with the use of aspect ratio retention methods including what is commonly referred to as 1:1 pixel mapping.

 

 


 

Aspect Ratio Control and 1:1 Pixel Mapping

 

 

This feature refers to the screens ability to maintain an aspect ratio of a source image at the hardware level. For instance, if you tried to play a 4:3 aspect game on a 16:10 format display, the image would normally be stretched to fill the screen, stretching the aspect ratio horizontally. However, if the hardware is capable of maintaining the aspect ratio, the screen can display the source in it's normal 4:3 ratio, and will add black borders along each side.

 

This aspect ratio retention can be achieved in two ways. The most reliable and easy to use is through the hardware (monitor) itself and normally involves the availability of preset modes in the OSD. There are often differing options available for aspect ratio control, including:

The other option for aspect ratio retention is through software. NVIDIA's display drivers for instance can achieve similar settings to above, when using the digital interface. However, results can be a little more variable and difficult to achieve. They are of course no use if you are using an external device such as a DVD player or games console as they are not normally able to control the aspect ratio themselves and would need to rely on the screen to support it at a hardware level.

 

See the Widescreen Monitor Guide for more information

 

 


Backlight Leakage

 

Backlight leakage refers to the problem some screens exhibit where in a darkly lit room, and with a dark image on the screen, you can clearly see areas particularly around the edges where the backlight shines through. This is a problem with the manufacturing stage and quality of the monitor build. A lot of panels will show slightly uneven backlighting, with perhaps a little light noticeable at the edges of the screen or in the corners. This is nothing really to worry about, but panel uniformity can vary from one screen to the next. Some screens on the other hand show far more severe and distracting bleed and often a return to the manufacturer is the only option for the buyer.
 

 
Click to enlarge some examples of backlight bleed

 

 

 


Banding


Banding of colours across gradients, click for larger version

Banding is an issue which you can sometimes spot on a monitor, and involves blocking and gradation of colours to a considerable level. This is most evident when viewing colour gradients, and rather than the colours showing a gradual change in shade as they should, the image appears as blocks with clearly defined steps. A certain degree of gradation in a gradient image can be expected from many monitors, despite the fact that in an ideal world, the gradient would be smooth and all transitions would be transparent. However, it is in the cases where the gradation is more noticeable that it results in what is popularly referred to as "banding".

Some users think that striped gradients are due to the use of 6-bit matrixes instead of 8-bit ones, but this is not exactly true. The lower colour depth of the matrix may indeed lead to stripes in gradients if the Frame Rate Control is poorly implemented (this is the technology that emulates 16 million colours while the matrix itself is only capable of displaying ~262,000), but the real reason is usually different. Before outputting the image on the screen, the monitor performs a series of calculations and transformations: colour temperature correction, gamma compensation, contrast correction, etc. If the accuracy of those calculations is low, you see striped gradients. The matrix’s colour depth has nothing to do with it. Even an “honest” 8-bit matrix cannot guarantee that the monitor will correctly process the data before sending them to the matrix. Some models will offer technologies which have higher bit internal processing (commonly 10-bit or 12-bit for example) along with higher bit LUT to help provide wider colour palettes and better processing. This can help minimise and avoid banding issues on gradients.

Some monitors have made banding rather infamous and so many potential buyers now cite this as an important test of a screen, and something which can really separate the good from the bad. A lot of this is quite exaggerated however, with far too much concern about even slight gradation across colour gradients. The early releases of the Dell 2xx7 series were a classic example of where colour banding became a concern. The early releases did show some pretty bad banding, which was promptly fixed by Dell with firmware upgrades. However, it has resulted in many users criticising displays for even slight gradation, and not really considering whether it is really an issue in real use. For the majority of users, it would probably not be an issue in practice, and you'd probably be hard pressed to see any adverse affects of this issue in anything other than colour gradient tests. I would advise caution about the talk of banding on displays, and consider whether there is really as much of an issue as some people make out.

 


Screen Door

 

The Screen Door effect is so called because sometimes it is possible to clearly see the individual pixels in a panel and the gaps between them. This is quite rare, but can be distracting if you are using a TFT up close. It may be more apparent where pixel pitch is large (e.g. a large screen with a relatively low native resolution / number of pixels in the matrix).

 

 


Input Lag

Input lag is described as the lag between the output from a graphics card and the image which is displayed on the screen you are using. For LCD screens this should not be confused with pixel response time which describes the speed at which a pixel can change from one orientation to another. Pixel response times impact aspects such as motion blur and ghosting in moving images. On the other hand input lag is a delay between what is sent to the monitor, and what you actually see. This can have impacts particularly in gaming where if the screen is lagging at all, it can have adverse affects on first person shooter games and the likes where every millisecond counts.

 

Input lag is sometimes categorised in two ways which can make things a little confusing. One way to describe input lag is to talk about the raw signal processing delay introduced by the electronics of the screen. In some cases this can be measured accurately using an oscilloscope system. However while that might strictly be the "input lag" of the screen it doesn't account for the overall lag of the display experienced by the user. It is the overall "display lag" which is also important to users and is really the number most regularly referred to as "input lag". The display lag would be a combination of the signal processing lag and an element of the pixel response times. This overall display lag would then be that seen by the user when comparing against a CRT for instance.

 

The level of lag really depends on the TFT display, and is controlled by many signal processing factors including, but not limited to the internal electronics and scaling chips. Some manufacturers even take measures to help reduce this, providing modes which bypass scaler chips and options which reduce the input lag. These are often reserved for gamer-orientated screens but the results can be quite noticeable in some cases.

 
In practice, input lag is unlikely to affect too many general users. There is quite a lot of fuss made about it on forums, but in reality I would doubt many people will see any real issues on the majority of displays. Some professional gamers who rely on being able to match their key presses and mouse movements with what is shown on the screen might suffer in some cases, so it is something to be wary of. Generally though, I would avoid worrying too much about this issue for most average uses.

 

Further Reading: Input Lag Measurement Techniques
 

 

 


Look Up Table (LUT)

If you want a full understanding of what a Look Up Table is I'd recommend reading here on Wikipedia. For the sake of keeping this more simple, in the context of monitors we commonly talk about two types of LUT which ultimately communicate with one another to produce the image seen on your screen.

3D LUT for Better Additive Colour Mixture

Whereas a typical 1D LUT adjusts colour on separate tables for each red, green, and blue, a 3D LUT accomplishes this on a single, mixed-colour cubic table. A 3D LUT improves the monitor's additive colour mixture (combination of RGB), a key factor in its ability to display neutral grey tones.

 

 


Cleartype

 

Cleartype was introduced by Microsoft for use with LCD displays to make fonts more rounded and less jagged. This is effectively a filter used to blur the fonts a little which some people prefer the look of. This can vary from one TFT to another, and it is easy enough to turn on and off to allow you to decide which you prefer. Microsoft’s article about the Cleartype filter can be found here:
 

Further info: Microsoft

 

 


Burn-In of Images / Image Persistence

 

Image burn in was traditionally a problem with CRT displays, where prolonged images on the screen could leave a ghost image behind after it has changed. This was a problem with older CRT displays and was the reason for the introduction of screen savers. With TFT’s this is not really a major problem as the image cannot be burnt into the screen by the cathode ray gun, as the pixels all operate individually. Some  screens can very occasionally show some lasting imprint of an image if the same picture is left on the screen for long periods of time, but it is generally not permanent. This can often be easily solved by looking at some fast moving scenes or gaming. For the sake of electricity more than anything else though, it is probably easiest to use the power settings on your PC to turn the screen off when not in use.

 

 


Dead Pixels

 

One of the main concerns people have when buying a TFT relates to the problem of dead pixels. Pixels can sometimes be ‘dead’ (stuck on black or white). Sometimes the sub pixels which make up the pixel can be dead which leaves the pixel looking red, green or blue. Sometimes the sub pixels can be ‘lazy’ and with a bit of luck can come back to life.

 

 

Dead pixels / sub pixels defects are normally caused during the manufacturing stage, and it is very rare for a panel to generate a pixel fault at a later stage unless you have a tendency to prod the screen. Nowadays, manufacturing levels are very good and it is quite rare for a pixel to be ‘dead’, and you will see some manufacturers like Samsung and ViewSonic for instance, offering zero dead pixel policies. Dead sub pixels are still a problem, and the policy will not cover these in most cases. Dead pixels are not really considered a fault with a TFT monitor and you will need to consider this before purchasing. Refer to the manufacturer to find out what their dead pixel policy is.

 

Further Reading: What's The Situation With Dead Pixels?

  

 


On Screen Display (OSD)

The OSD refers to the "On Screen Display" available on nearly all TFT monitors. This allows the user to change settings ranging from brightness, contrast and colour levels (typically RGB) to more advanced features like aspect ratio and monitor preset features like Senseye and MagicTune for instance. One thing to note is that some features like contrast, phase and pixel clock are only available when using the VGA (analogue) interface and become greyed out when using the DVI (digital interface) as they are no longer required. Proper configuration of a monitor requires RGB levels to be altered and brightness and contrast to be set correctly. More advanced features are often accessible and modern OSD often offer a wealth of selections. Some OSD also offer factory menus and information about the screen or panel being used which can be particularly useful for the enthusiast.

 


HDCP Support

High-bandwidth Digital Content Protection (HDCP) is a form of Digital Rights Management (DRM) developed by Intel Corporation to control digital audio and video content as it travels across Digital Visual Interface (DVI) or High-Definition Multimedia Interface (HDMI) connections. The specification is proprietary, and creating an implementation of HDCP requires a license.

HDCP's main target is to prevent transmission of non-encrypted high definition content. In basic terms source material (HD-DVD, BluRay, Next Gen Video Games etc) will be encrypted with HDCP protection. In order to view / use these sources you will need each step in the 'chain' to have support for this protection technique. This includes graphics cards in PC's, DVD players and ultimately (and where we are interested in), the monitor / display device. If all these steps do not have support for HDCP, any encrypted material will have problems playing, typically being reduced to a much lower resolution, showing "not supported" type messages, or not showing any image at all.

HDCP functions over digital interfaces only; and so DVI and HDMI ports are those most affected at present. For a monitor or TV to be truly HD compliant, it must offer HDCP compatibility. Many modern displays do offer this support, but bare in mind they would need digital interfaces to offer this. You may want to consider whether a monitor has HDCP support or not when making your decision, since it may well have an impact on your use in the future. While it was thought that HDCP would not be implemented for many years, it seems it may well be sooner than we had expected. See the below links for further information.

Further Reading:


Wikipedia Details
BeHardware Article 2
BeHardware Article 1

 


Ergonomics - Pivot / Rotate / Tilt / Height

 

Many screens today have the added functionality of height, pivot, rotate or tilt functions, or sometimes more than one of these. These are provided depending on the stand used and often dependent on the size of the screen. To provide a versatile stand with a wide range of adjustments can add additional cost to the screen and so on some models they are left off.

 

Be careful of screens with limited tilt and height adjustments, as they might be restrictive when it comes to aligning them to your line of sight. The use of some features, particularly rotate, becomes a little questionable on the larger screens such as >24" models, but some may still find them useful and an attractive buying point.


 

 


VESA Compatibility

 

It is possible to detach the stand from some TFT models and instead mount them to a swinging arm on a wall or desk. If this is something you might wish to do, look for TFT’s which specify compatibility with VESA mounts. These can provide improved alignment of a monitor and easier use depending on your needs.

 

 

 


DDC/CI Compliance

One of the requirements for a Windows Vista when it was released was that a compatible monitor is DDC/CI (Display Data Channel Command Interface) compliant. This provides full bidirectional communication between host (PC) and display. Through DDC/CI support, user can use appropriate software to adjust the monitor instead of using the monitor control keys.

 

 


Colour Reproduction

 

Colour reproduction is related to the ability of a panel to produce the colours desired. Typically, the colour reproduction is measured by reviewers using a hardware colorimeter device and a top end software package. They are recorded on graphs similar to this example (on the right):

 

This graph on the right shows the difference between the desired color shade and the one actually displayed. Basically, the lower these bars down the Y-axis, the better, in terms of colour accuracy. For reference, LaCie (who produce this specific software)  describe the DeltaE readings as:

See our reviews for further information about colour accuracy, but it is worth noting that colour accuracy will vary from one screen to another, often varies between different panel technologies, and will vary between default factory settings and a calibrated profile.

 

 


Contrast Stability

 

This curve indicates the contrast value measured at a given brightness adjustment on the OSD. In theory, brightness and contrast are two independent parameters, and good contrast is a requirement regardless of the brightness adjustment. Unfortunately, such is not the case in practice. The brightness adjustment is shown on the X-axis, contrast on the Y-axis, and in theory this should be fairly even across the OSD brightness adjustment range (but isn't always!)

 


Panel Uniformity

 

 

Again, some reviewers like ourselves measure the uniformity of a screen. This is useful for considering the uniformity of the panels lighting, and relates to backlight bleeding sometimes when uniformity is particularly bad. Measurements are taken across the screen and compared with a given reference value as measured in the centre of the screen. The deviance from this reference point is then provided as a percentage, showing how the luminance varies across the screen.